
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Chapter 5: Advanced SQL

©Silberschatz, Korth and Sudarshan5.2Database System Concepts - 7th Edition

Outline

 Accessing SQL From a Programming Language

 Functions and Procedures

 Triggers

 Cursor

©Silberschatz, Korth and Sudarshan5.3Database System Concepts - 7th Edition

Functions and Procedures

©Silberschatz, Korth and Sudarshan5.4Database System Concepts - 7th Edition

Functions and Procedures

 Functions and procedures allow “business logic” to be stored
in the database and executed from SQL statements.

 These can be defined either by the procedural component of
SQL or by an external programming language such as Java,
C, or C++.

 The syntax we present here is defined by the SQL standard.

• Most databases implement nonstandard versions of this
syntax.

©Silberschatz, Korth and Sudarshan5.5Database System Concepts - 7th Edition

Declaring SQL Functions

 Define a function that, given the name of a department, returns the
count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))
returns integer
begin
declare d_count integer;

select count (*) into d_count
from instructor
where instructor.dept_name = dept_name

return d_count;
end

 The function dept_count can be used to find the department names
and budget of all departments with more that 12 instructors.

select dept_name, budget
from department
where dept_count (dept_name) > 12

©Silberschatz, Korth and Sudarshan5.6Database System Concepts - 7th Edition

Table Functions

 The SQL standard supports functions that can return tables as results;
such functions are called table functions

 Example: Return all instructors in a given department

create function instructor_of (dept_name char(20))

returns table (

ID varchar(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary
from instructor
where instructor.dept_name = instructor_of.dept_name)

 Usage

select *
from table (instructor_of ('Music'))

©Silberschatz, Korth and Sudarshan5.7Database System Concepts - 7th Edition

SQL Procedures

 The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20),
out d_count integer)

begin

select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end

 The keywords in and out are parameters that are expected to
have values assigned to them and parameters whose values are
set in the procedure in order to return results.

 Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.

declare d_count integer;
call dept_count_proc('Physics', d_count);

©Silberschatz, Korth and Sudarshan5.8Database System Concepts - 7th Edition

SQL Procedures (Cont.)

 Procedures and functions can be invoked also from dynamic SQL

 SQL allows more than one procedure of the so long as the number of
arguments of the procedures with the same name is different.

 The name, along with the number of arguments, is used to identify the
procedure.

©Silberschatz, Korth and Sudarshan5.9Database System Concepts - 7th Edition

Language Constructs for Procedures & Functions

 SQL supports constructs that gives it almost all the power of a
general-purpose programming language.

• Warning: most database systems implement their own variant of
the standard syntax below.

 Compound statement: begin … end,

• May contain multiple SQL statements between begin and end.

• Local variables can be declared within a compound statements

 While and repeat statements:

• while boolean expression do
sequence of statements ;

end while

• repeat
sequence of statements ;

until boolean expression
end repeat

©Silberschatz, Korth and Sudarshan5.10Database System Concepts - 7th Edition

Language Constructs (Cont.)

 For loop
• Permits iteration over all results of a query

 Example: Find the budget of all departments

declare n integer default 0;
for r as

select budget from department
where dept_name = 'Music'

do
set n = n + r.budget

end for

©Silberschatz, Korth and Sudarshan5.11Database System Concepts - 7th Edition

Language Constructs – if-then-else

 Conditional statements (if-then-else)

if boolean expression
then statement or compound statement

elseif boolean expression
then statement or compound statement

else statement or compound statement
end if

©Silberschatz, Korth and Sudarshan5.12Database System Concepts - 7th Edition

Example procedure

 Registers student after ensuring classroom capacity is not
exceeded

• Returns 0 on success and -1 if capacity is exceeded

• See book (page 202) for details

 Signaling of exception conditions, and declaring handlers for
exceptions

declare out_of_classroom_seats condition
declare exit handler for out_of_classroom_seats
begin
…
end

 The statements between the begin and the end can raise an
exception by executing “signal out_of_classroom_seats”

 The handler says that if the condition arises he action to be taken
is to exit the enclosing the begin end statement.

©Silberschatz, Korth and Sudarshan5.13Database System Concepts - 7th Edition

External Language Routines

 SQL allows us to define functions in a programming language such
as Java, C#, C or C++.

• Can be more efficient than functions defined in SQL, and
computations that cannot be carried out in SQL\can be executed by
these functions.

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C
external name '/usr/avi/bin/dept_count_proc'

create function dept_count(dept_name varchar(20))
returns integer
language C
external name '/usr/avi/bin/dept_count'

©Silberschatz, Korth and Sudarshan5.14Database System Concepts - 7th Edition

External Language Routines (Cont.)

 Benefits of external language functions/procedures:

• more efficient for many operations, and more expressive
power.

 Drawbacks

• Code to implement function may need to be loaded into
database system and executed in the database system’s
address space.

 risk of accidental corruption of database structures

 security risk, allowing users access to unauthorized data

• There are alternatives, which give good security at the cost
of potentially worse performance.

• Direct execution in the database system’s space is used
when efficiency is more important than security.

©Silberschatz, Korth and Sudarshan5.15Database System Concepts - 7th Edition

Security with External Language Routines

 To deal with security problems, we can do on of the following:

• Use sandbox techniques

 That is, use a safe language like Java, which cannot be
used to access/damage other parts of the database
code.

• Run external language functions/procedures in a separate
process, with no access to the database process’ memory.

 Parameters and results communicated via inter-process
communication

 Both have performance overheads

 Many database systems support both above approaches as
well as direct executing in database system address space.

©Silberschatz, Korth and Sudarshan5.16Database System Concepts - 7th Edition

Triggers

©Silberschatz, Korth and Sudarshan5.17Database System Concepts - 7th Edition

Triggers

 A trigger is a statement that is executed automatically by
the system as a side effect of a modification to the
database.

 To design a trigger mechanism, we must:

• Specify the conditions under which the trigger is to be
executed.

• Specify the actions to be taken when the trigger
executes.

 Triggers introduced to SQL standard in SQL:1999, but
supported even earlier using non-standard syntax by most
databases.

• Syntax illustrated here may not work exactly on your
database system; check the system manuals

©Silberschatz, Korth and Sudarshan5.18Database System Concepts - 7th Edition

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes

• For example, after update of takes on grade

 Values of attributes before and after an update can be referenced

• referencing old row as : for deletes and updates

• referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as
extra constraints. For example, convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row

when (nrow.grade = ' ')
begin atomic

set nrow.grade = null;
end;

©Silberschatz, Korth and Sudarshan5.19Database System Concepts - 7th Edition

Trigger to Maintain credits_earned value

create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> 'F' and nrow.grade is not null

and (orow.grade = 'F' or orow.grade is null)
begin atomic

update student
set tot_cred= tot_cred +

(select credits
from course
where course.course_id= nrow.course_id)

where student.id = nrow.id;
end;

©Silberschatz, Korth and Sudarshan5.20Database System Concepts - 7th Edition

Statement Level Triggers

 Instead of executing a separate action for each affected
row, a single action can be executed for all rows affected by
a transaction

• Use for each statement instead of for each row

• Use referencing old table or referencing new
table to refer to temporary tables (called transition
tables) containing the affected rows

• Can be more efficient when dealing with SQL
statements that update a large number of rows

©Silberschatz, Korth and Sudarshan5.21Database System Concepts - 7th Edition

When Not To Use Triggers

 Triggers were used earlier for tasks such as
• Maintaining summary data (e.g., total salary of each

department)
• Replicating databases by recording changes to

special relations (called change or delta relations)
and having a separate process that applies the
changes over to a replica

 There are better ways of doing these now:
• Databases today provide built in materialized view

facilities to maintain summary data
• Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in
many cases
• Define methods to update fields
• Carry out actions as part of the update methods

instead of through a trigger

©Silberschatz, Korth and Sudarshan5.22Database System Concepts - 7th Edition

When Not To Use Triggers (Cont.)

 Risk of unintended execution of triggers, for example,
when
• Loading data from a backup copy
• Replicating updates at a remote site
• Trigger execution can be disabled before such

actions.
 Other risks with triggers:

• Error leading to failure of critical transactions that
set off the trigger

• Cascading execution

©Silberschatz, Korth and Sudarshan5.23Database System Concepts - 7th Edition

Cursor

https://www.mysqltutorial.org/mysql-cursor/

©Silberschatz, Korth and Sudarshan5.24Database System Concepts - 7th Edition

End of Chapter 5

